
Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

Chapter 5: Advanced SQL

©Silberschatz, Korth and Sudarshan5.2Database System Concepts - 7th Edition

Outline

 Accessing SQL From a Programming Language

 Functions and Procedures

 Triggers

 Cursor

©Silberschatz, Korth and Sudarshan5.3Database System Concepts - 7th Edition

Functions and Procedures

©Silberschatz, Korth and Sudarshan5.4Database System Concepts - 7th Edition

Functions and Procedures

 Functions and procedures allow “business logic” to be stored
in the database and executed from SQL statements.

 These can be defined either by the procedural component of
SQL or by an external programming language such as Java,
C, or C++.

 The syntax we present here is defined by the SQL standard.

• Most databases implement nonstandard versions of this
syntax.

©Silberschatz, Korth and Sudarshan5.5Database System Concepts - 7th Edition

Declaring SQL Functions

 Define a function that, given the name of a department, returns the
count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))
returns integer
begin
declare d_count integer;

select count (*) into d_count
from instructor
where instructor.dept_name = dept_name

return d_count;
end

 The function dept_count can be used to find the department names
and budget of all departments with more that 12 instructors.

select dept_name, budget
from department
where dept_count (dept_name) > 12

©Silberschatz, Korth and Sudarshan5.6Database System Concepts - 7th Edition

Table Functions

 The SQL standard supports functions that can return tables as results;
such functions are called table functions

 Example: Return all instructors in a given department

create function instructor_of (dept_name char(20))

returns table (

ID varchar(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

return table
(select ID, name, dept_name, salary
from instructor
where instructor.dept_name = instructor_of.dept_name)

 Usage

select *
from table (instructor_of ('Music'))

©Silberschatz, Korth and Sudarshan5.7Database System Concepts - 7th Edition

SQL Procedures

 The dept_count function could instead be written as procedure:

create procedure dept_count_proc (in dept_name varchar(20),
out d_count integer)

begin

select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end

 The keywords in and out are parameters that are expected to
have values assigned to them and parameters whose values are
set in the procedure in order to return results.

 Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement.

declare d_count integer;
call dept_count_proc('Physics', d_count);

©Silberschatz, Korth and Sudarshan5.8Database System Concepts - 7th Edition

SQL Procedures (Cont.)

 Procedures and functions can be invoked also from dynamic SQL

 SQL allows more than one procedure of the so long as the number of
arguments of the procedures with the same name is different.

 The name, along with the number of arguments, is used to identify the
procedure.

©Silberschatz, Korth and Sudarshan5.9Database System Concepts - 7th Edition

Language Constructs for Procedures & Functions

 SQL supports constructs that gives it almost all the power of a
general-purpose programming language.

• Warning: most database systems implement their own variant of
the standard syntax below.

 Compound statement: begin … end,

• May contain multiple SQL statements between begin and end.

• Local variables can be declared within a compound statements

 While and repeat statements:

• while boolean expression do
sequence of statements ;

end while

• repeat
sequence of statements ;

until boolean expression
end repeat

©Silberschatz, Korth and Sudarshan5.10Database System Concepts - 7th Edition

Language Constructs (Cont.)

 For loop
• Permits iteration over all results of a query

 Example: Find the budget of all departments

declare n integer default 0;
for r as

select budget from department
where dept_name = 'Music'

do
set n = n + r.budget

end for

©Silberschatz, Korth and Sudarshan5.11Database System Concepts - 7th Edition

Language Constructs – if-then-else

 Conditional statements (if-then-else)

if boolean expression
then statement or compound statement

elseif boolean expression
then statement or compound statement

else statement or compound statement
end if

©Silberschatz, Korth and Sudarshan5.12Database System Concepts - 7th Edition

Example procedure

 Registers student after ensuring classroom capacity is not
exceeded

• Returns 0 on success and -1 if capacity is exceeded

• See book (page 202) for details

 Signaling of exception conditions, and declaring handlers for
exceptions

declare out_of_classroom_seats condition
declare exit handler for out_of_classroom_seats
begin
…
end

 The statements between the begin and the end can raise an
exception by executing “signal out_of_classroom_seats”

 The handler says that if the condition arises he action to be taken
is to exit the enclosing the begin end statement.

©Silberschatz, Korth and Sudarshan5.13Database System Concepts - 7th Edition

External Language Routines

 SQL allows us to define functions in a programming language such
as Java, C#, C or C++.

• Can be more efficient than functions defined in SQL, and
computations that cannot be carried out in SQL\can be executed by
these functions.

 Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C
external name '/usr/avi/bin/dept_count_proc'

create function dept_count(dept_name varchar(20))
returns integer
language C
external name '/usr/avi/bin/dept_count'

©Silberschatz, Korth and Sudarshan5.14Database System Concepts - 7th Edition

External Language Routines (Cont.)

 Benefits of external language functions/procedures:

• more efficient for many operations, and more expressive
power.

 Drawbacks

• Code to implement function may need to be loaded into
database system and executed in the database system’s
address space.

 risk of accidental corruption of database structures

 security risk, allowing users access to unauthorized data

• There are alternatives, which give good security at the cost
of potentially worse performance.

• Direct execution in the database system’s space is used
when efficiency is more important than security.

©Silberschatz, Korth and Sudarshan5.15Database System Concepts - 7th Edition

Security with External Language Routines

 To deal with security problems, we can do on of the following:

• Use sandbox techniques

 That is, use a safe language like Java, which cannot be
used to access/damage other parts of the database
code.

• Run external language functions/procedures in a separate
process, with no access to the database process’ memory.

 Parameters and results communicated via inter-process
communication

 Both have performance overheads

 Many database systems support both above approaches as
well as direct executing in database system address space.

©Silberschatz, Korth and Sudarshan5.16Database System Concepts - 7th Edition

Triggers

©Silberschatz, Korth and Sudarshan5.17Database System Concepts - 7th Edition

Triggers

 A trigger is a statement that is executed automatically by
the system as a side effect of a modification to the
database.

 To design a trigger mechanism, we must:

• Specify the conditions under which the trigger is to be
executed.

• Specify the actions to be taken when the trigger
executes.

 Triggers introduced to SQL standard in SQL:1999, but
supported even earlier using non-standard syntax by most
databases.

• Syntax illustrated here may not work exactly on your
database system; check the system manuals

©Silberschatz, Korth and Sudarshan5.18Database System Concepts - 7th Edition

Triggering Events and Actions in SQL

 Triggering event can be insert, delete or update

 Triggers on update can be restricted to specific attributes

• For example, after update of takes on grade

 Values of attributes before and after an update can be referenced

• referencing old row as : for deletes and updates

• referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as
extra constraints. For example, convert blank grades to null.

create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row

when (nrow.grade = ' ')
begin atomic

set nrow.grade = null;
end;

©Silberschatz, Korth and Sudarshan5.19Database System Concepts - 7th Edition

Trigger to Maintain credits_earned value

create trigger credits_earned after update of takes on (grade)
referencing new row as nrow
referencing old row as orow
for each row
when nrow.grade <> 'F' and nrow.grade is not null

and (orow.grade = 'F' or orow.grade is null)
begin atomic

update student
set tot_cred= tot_cred +

(select credits
from course
where course.course_id= nrow.course_id)

where student.id = nrow.id;
end;

©Silberschatz, Korth and Sudarshan5.20Database System Concepts - 7th Edition

Statement Level Triggers

 Instead of executing a separate action for each affected
row, a single action can be executed for all rows affected by
a transaction

• Use for each statement instead of for each row

• Use referencing old table or referencing new
table to refer to temporary tables (called transition
tables) containing the affected rows

• Can be more efficient when dealing with SQL
statements that update a large number of rows

©Silberschatz, Korth and Sudarshan5.21Database System Concepts - 7th Edition

When Not To Use Triggers

 Triggers were used earlier for tasks such as
• Maintaining summary data (e.g., total salary of each

department)
• Replicating databases by recording changes to

special relations (called change or delta relations)
and having a separate process that applies the
changes over to a replica

 There are better ways of doing these now:
• Databases today provide built in materialized view

facilities to maintain summary data
• Databases provide built-in support for replication

 Encapsulation facilities can be used instead of triggers in
many cases
• Define methods to update fields
• Carry out actions as part of the update methods

instead of through a trigger

©Silberschatz, Korth and Sudarshan5.22Database System Concepts - 7th Edition

When Not To Use Triggers (Cont.)

 Risk of unintended execution of triggers, for example,
when
• Loading data from a backup copy
• Replicating updates at a remote site
• Trigger execution can be disabled before such

actions.
 Other risks with triggers:

• Error leading to failure of critical transactions that
set off the trigger

• Cascading execution

©Silberschatz, Korth and Sudarshan5.23Database System Concepts - 7th Edition

Cursor

https://www.mysqltutorial.org/mysql-cursor/

©Silberschatz, Korth and Sudarshan5.24Database System Concepts - 7th Edition

End of Chapter 5

